选课中心NEW
7099人选课
SAT【0】元讲座
免费学
托福【0】元讲座
免费学
SAT模考网站HOT
39209人预约
托福TPO模考网站HOT
39209人预约
SAT辅导课程NEW
免费报名
AP辅导课程NEW
立即报名
中学生托福课程NEW
立即报名
大学生托福课程NEW
立即报名
【定制】1v1
私人订制
【资料】考前冲刺
精
扫码添加助教
免费领取
备考资料大礼包
扫码关注公众号
为了帮助大家高效备考SAT,新东方在线SAT频道为大家带来SAT2数学考试题目:Exponents,希望对大家SAT备考有所帮助。更多精彩尽请关注新东方在线SAT频道!
An exponent defines the number of times a number is to be multiplied by itself. For example, in ab, where a is the base, and b the exponent, a is multiplied by itself b times. In a numerical example, 25 = 2 2 2 2 2. An exponent can also be referred to as a power: a number with an exponent of 2 is raised to the second power. There are some other terms that you should be familiar with:
? Base. The base refers to the 3 in 35. It is the number that is being multiplied by itself however many times specified by the exponent.
? Exponent. The exponent (or power) is the 5 in 35. The exponent tells how many times the base is to be multiplied by itself.
? Square. Saying that a number is “squared” means that it has been raised to the second power, i.e., that it has an exponent of 2. In the expression 62, 6 has been squared.
? Cube. Saying that a number is “cubed” means that it has been raised to the third power, i.e., that it has an exponent of 3. In the expression 43, 4 has been cubed.
Common Exponents
It may be worth your while to memorize a few common exponents before the test. Knowing these regularly used exponents can save you the time it would take to calculate them during the test. Here is a list of squares from 1 through 10:
Memorizing the first few cubes can be helpful as well:
Finally, the first few powers of two are useful for many applications:
Adding and Subtracting Numbers with Exponents
In order to add or subtract numbers with exponents, you have to first find the value of each power, and then add the two numbers. For example, to add 33 + 42, you must expand the exponents to get (3 3 3) + (4 4), and then, finally, 27 + 16 = 43.
If you’re dealing with algebraic expressions that have the same bases and exponents, such as 3x4 and 5x4, then they can simply be added and subtracted. For example, 3x4 + 5x4 = 8x4.
Multiplying and Dividing Numbers with Exponents
To multiply exponential numbers or terms that have the same base, add the exponents together:
To divide two same-base exponential numbers or terms, just subtract the exponents.
To multiply exponential numbers raised to the same exponent, raise their product to that exponent:
To divide exponential numbers raised to the same exponent, raise their quotient to that exponent:
If you need to multiply or divide two exponential numbers that do not have the same base or exponent, you’ll just have to do your work the old-fashioned way: multiply the exponential numbers out and multiply or divide the result accordingly.
Raising an Exponent to an Exponent
Occasionally you might encounter an exponent raised to another exponent, as seen in the following formats (32)4 and (x4)3. In such cases, multiply the powers:
Exponents and Fractions
To raise a fraction to an exponent, raise both the numerator and denominator to that exponent:
Exponents and Negative Numbers
As we said in the section on negative numbers, when you multiply a negative number by another negative number, you get a positive number, and when you multiply a negative number by a positive number, you get a negative number. These rules affect how negative numbers function in reference to exponents.
? When you raise a negative number to an even-number exponent, you get a positive number. For example (–2)4 = 16. To see why this is so, let’s break down the example. (–2)4 means –2 –2 –2 –2. When you multiply the first two –2s together, you get +4 because you are multiplying two negative numbers. Then, when you multiply the +4 by the next –2, you get –8, since you are multiplying a positive number by a negative number. Finally, you multiply the –8 by the last –2 and get +16, since you’re once again multiplying two negative numbers.
? When you raise a negative number to an odd power, you get a negative number. To see why, all you have to do is look at the example above and stop the process at –8, which equals (–2)3.
These rules can help a great deal as you go about eliminating answer choices and checking potentially correct answers. For example, if you have a negative number raised to an odd power, and you get a positive answer, you know your answer is wrong. Likewise, on that same question, you could eliminate any answer choices that are positive.
Special Exponents
There are a few special properties of certain exponents that you also need to know.
Zero
Any base raised to the power of zero is equal to 1. If you see any exponent of the form x0, you should know that its value is 1. Note, however, that 00 is undefinded.
One
Any base raised to the power of one is equal to itself. For example, 21 = 2, (–67)1 = –67 and x1 = x. This can be helpful when you’re attempting an operation on exponential terms with the same base. For example:
Fractional Exponents
Exponents can be fractions, too. When a number or term is raised to a fractional power, it is called taking the root of that number or term. This expression can be converted into a more convenient form:
Or, for example, 213 ? 5 is equal to the fifth root of 2 to the thirteenth power:
The symbol is also known as the radical, and anything under the radical, in this case , is called the radicand. For a more familiar example, look at 91?2, which is the same as :
Fractional exponents will play a large role on SAT II Math IC, so we are just giving you a quick introduction to the topic now. Don’t worry if some of this doesn’t quite make sense now; we’ll go over roots thoroughly in the next section.
Negative Exponents
Seeing a negative number as a power may be a little strange the first time around. But the principle at work is simple. Any number or term raised to a negative power is equal to the reciprocal of that base raised to the opposite power. For example:
Or, a slightly more complicated example:
With that, you’ve got the four rules of special exponents. Here are some examples to firm up your knowledge:
以上就是关于“SAT2数学考试题目:Exponents”的内容,更多精彩内容,请关注SAT频道!
SAT水平能力测试【0元免费测试】
资料下载
【SAT】SAT官方指南题目合集10套
发布时间:2024-04-15添加新东方在线美本助教号
回复【美本资料】获取
SAT阅读+文法+数学专项题型练习册
发布时间:2024-05-31添加新东方在线美本助教号
回复【美本资料】获取
机考SAT-可汗练习题
发布时间:2024-02-29添加新东方在线美本助教号
回复【美本资料】获取
机考SAT-CB官方样题
发布时间:2024-02-29添加新东方在线美本助教号
回复【美本资料】获取
《学科留学百问 (AP-IB-A Level)》
发布时间:2023-02-22添加新东方在线美本助教号
回复【美本资料】获取
2024中国学生留学备考白皮书
发布时间:2023-02-22添加新东方在线美本助教号
回复【美本资料】获取
2023北美考试一本通高中篇
发布时间:2023-02-22添加新东方在线美本助教号
回复【美本资料】获取
新东方SAT阅读讲义
发布时间:2023-02-06添加新东方在线美本助教号
回复【美本资料】获取
2023北美考试一本通高中篇
发布时间:2024-02-29关注美本留学家长帮微信订阅号
回复【美本资料】获取
2024中国学生留学备考白皮书
发布时间:2019-12-19添加新东方在线美本助教号
回复【美本】获取
《学科留学百问 (AP-IB-A Level)》
发布时间:2019-12-19添加新东方在线美本助教号
回复【美本资料】获取
机考SAT-CB官方样题
发布时间:2019-12-19添加新东方在线美本助教号
回复【美本资料】获取
机考SAT-可汗练习题
发布时间:2019-12-19添加新东方在线美本助教号
回复【美本资料】获取
SAT阅读+文法+数学专项题型练习册
发布时间:2019-11-28添加新东方在线美本助教号
回复【美本资料】获取
添加美本助教
即可获取美本资料大礼包
推荐阅读
在2024年的QS学科排名中,英国大学再次展现了他们在教育领域的卓越表现。这次排名中,英国大学在16个学科领域取得了世界第一的成绩,为其在全球教育界树立了新的标杆。
来源 : 网络整理 2024-04-23 11:16:49 关键字 : QS学科排名,英国大学qs学科排名
市场营销作为当代商业领域中至关重要的学科之一,一直备受关注。为了帮助读者更好地了解2024年全球市场营销学科的最新发展和排名情况,本文将介绍QS世界大学市场营销学科的排名榜单,并提供相关的官网链接供读者参考。
来源 : 网络整理 2024-04-23 10:21:37 关键字 : 市场营销学科排名,qs学科排名
备受关注的2024年酒店管理学科全球大学排名榜单终于揭晓,给全球学子带来了巨大的惊喜和期待。作为酒店管理学科领域的权威排行榜,该榜单汇集了各大知名院校和学者的投票和研究结果,为学生们提供了一份权威的选校参考指南。
来源 : 网络整理 2024-04-23 10:15:16 关键字 : 酒店管理学科排名,qs学科排名
每年QS世界大学统计与运筹学学科排名榜单都受到广泛关注,2024年的排名榜单也引起了极大的关注和讨论。首先,让我们来看一下2024QS世界大学统计与运筹学学科排名榜单的前几名。
来源 : 网络整理 2024-04-23 10:10:12 关键字 : 统计与运筹学学科排名,qs学科排名
随着2024QS世界大学经济与计量经济学学科排名榜单的发布,我们可以全面了解到这一领域的最新动态。本文将为您详细介绍2024QS世界大学经济与计量经济学学科排名榜单,解读其中的重点内容,并对我国相关大学在排名中的表现进行分析。
来源 : 网络整理 2024-04-23 10:03:55 关键字 : 经济与计量经济学学科排名,qs学科排名
最新发布的2024QS世界大学社会政策与行政管理排名榜单已经震动了全球教育界。这一排名榜单是依据世界知名教育机构QS(Quacquarelli Symonds)的权威数据和专业评估,为我们提供了一份准确且独具参考价值的全球大学排名。
来源 : 网络整理 2024-04-22 17:01:59 关键字 : 社会政策与行政管理学科排名,qs学科排名
社会学作为一门独具特色的学科,对于了解人类社会的发展和变迁起着举足轻重的作用。每年,QS世界大学社会学排名榜单会揭晓全球各大高等院校在这一领域的表现,并成为了各界人士瞩目的焦点。今天,让我们一起来揭晓2024年的榜单,并深入探讨排名的背后故事。
来源 : 网络整理 2024-04-22 16:56:00 关键字 : 社会学学科排名,qs学科排名
在当今竞争激烈的社会中,选择一所优秀的大学对我们的未来发展至关重要。随着法律行业的日益发展和全球化的趋势,了解和掌握国际上优秀的法律学府成为了无比重要的事情。而2024QS世界大学法律与法律研究排名榜单正是我们选择合适学府的权威指南。
来源 : 网络整理 2024-04-22 16:51:49 关键字 : 法律与法律研究学科排名,qs学科排名
2024QS世界大学教育与培训排名榜单,作为权威的评估之一,给出了全球范围内的学府排名。本次榜单覆盖了各个学科领域,综合评估了学校的教学质量、师资水平、科研实力等多个方面,旨在为学生和家长提供一个参考。
来源 : 网络整理 2024-04-22 16:48:08 关键字 : 教育与培训学科排名,qs学科排名
政治学作为一门研究人类政治行为、政治制度、政治思想等内容的学科,一直备受关注。近日,2024QS世界大学排名公布了最新的政治学学科排名榜单,引起了广泛的关注和讨论。
来源 : 网络整理 2024-04-22 16:38:53 关键字 : 政治学学科排名,qs学科排名
自动领取备考资料大礼包
1. 打开手机微信【扫一扫】,识别上方二维码;
2.添加【美本助教】,自动领取留学备考资料大礼包。
公开讲座
真实了解自己的水平,为备考做好规划!
价格 : ¥0元
真实了解自己的水平,为备考做好规划!
价格 : ¥0元
真实了解自己的水平,为备考做好规划!
价格 : ¥0元
资料下载
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
关注美本留学家长帮微信订阅号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
自动领取备考资料大礼包
1. 打开手机微信【扫一扫】,识别上方二维码;
2.添加【Ella助教】,自动领取留学备考资料大礼包。
阅读排行榜
相关内容