选课中心NEW
7099人选课
SAT【0】元讲座
免费学
托福【0】元讲座
免费学
SAT模考网站HOT
39209人预约
托福TPO模考网站HOT
39209人预约
SAT辅导课程NEW
免费报名
AP辅导课程NEW
立即报名
中学生托福课程NEW
立即报名
大学生托福课程NEW
立即报名
【定制】1v1
私人订制
【资料】考前冲刺
精
扫码添加助教
免费领取
备考资料大礼包
扫码关注公众号
为了帮助大家高效备考SAT,新东方在线SAT频道为大家带来SAT2数学考试题目:Manipulating
Equations,希望对大家SAT备考有所帮助。更多精彩尽请关注新东方在线SAT频道!
Now that you know how to set up the equation, the next thing to do is to solve for the value that the question asks for. First and foremost, the most important thing to remember when manipulating equations is to do exactly the same thing to each side of the equation. If you divide one side of an equation by 3, you must divide the other side by 3. If you take the square root of one side of an equation, take the square root of the other.
By treating the two sides of the equation in the same way, you can rest easy that you won’t change the meaning of the equation. You will, of course, change the form of the equation—that’s the point of manipulating it. But the equation will always remain true as long as you always do the same thing to both sides.
For example, let’s look at what happens when you manipulate the equation 3x + 2 = 5, with x = 1.
1. Subtract 2 from both sides:
1. Multiply both sides by 2:
1. Add 4 to both sides:
These examples show that you can tamper with the equation in any way you want, as long as you commit the same tampering on both sides. If you follow this rule, you can manipulate the question how you want without affecting the value of its variables.
Solving an Equation with One Variable
To solve an equation with one variable, you must isolate that variable. Isolating a variable means manipulating the equation until the variable is the only thing remaining on one side of the equation. Then, by definition, that variable is equal to everything on the other side, and you have successfully “solved for the variable.”
For the quickest results, take the equation apart in the reverse order of operations. That is, first add and subtract any extra terms on the same side as the variable. Then, multiply and divide anything on the same side of the variable. Next, raise both sides of the equation to a power or take their roots according to any exponent attached to the variable. And finally, do anything inside parentheses. This process is PEMDAS in reverse (SADMEP!). The idea is to “undo” everything that is being done to the variable so that it will be isolated in the end. Let’s look at an example:
In this equation, the variable x is being squared, multiplied by 3, added to 5, etc. We need to do the opposite of all these operations in order to isolate x and thus solve the equation.
First, subtract 1 from both sides of the equation:
Then, multiply both sides of the equation by 4:
Next, divide both sides of the equation by 3:
Now, subtract 5 from both sides of the equation:
Again, divide both sides of the equation by 3:
Finally, take the square root of each side of the equation:
We have isolated x to show that x = ±5.
Sometimes the variable that needs to be isolated is not conveniently located. For example, it might be in a denominator or an exponent. Equations like these are solved the same way as any other equation, except that you may need different techniques to isolate the variable. Let’s look at a couple of examples:
Solve for x in the equation + 2 = 4.
The key step is to multiply both sides by x to extract the variable from the denominator. It is not at all uncommon to have to move the variable from side to side in order to isolate it.
Remember, performing an operation on a variable is mathematically no different than performing that operation on a constant or any other quantity
Here’s another, slightly more complicated example:
This question is a good example of how it’s not always simple to isolate a variable. (Don’t worry about the logarithm in this problem—we’ll review these later on in the chapter.) However, as you can see, even the thorniest problems can be solved systematically—as long as you have the right tools. In the next section, we’ll discuss factoring and distributing, two techniques that were used in this example.
So, having just given you a very basic introduction to solving equations, we’ll reemphasize two things:
1. Do the same thing to both sides.
2. Work backward (with respect to the order of operations).
Now we get into some more interesting tools you will need to solve certain equations.
Distributing and Factoring
Distributing and factoring are two of the most important techniques in algebra. They give you ways of manipulating expressions without changing the expression’s value. So it follows that you can factor or distribute one side of the equation without doing the same for the other side of the equation.
The basis for both techniques is the following property, called the distributive property:
Similarly:
a can be any kind of term, from a variable to a constant to a combination of the two.
Distributing
When you distribute a factor into an expression within parentheses, you simply multiply each term inside the parentheses by the factor outside the parentheses. For example, consider the expression 3y(y2 – 6):
If we set the original, undistributed expression equal to another expression, you can see why distributing facilitates the solving of some equations. Solving 3y (y2 – 6) = 3y3 + 36 looks quite difficult. But if you distribute the 3y, you get:
Subtracting 3y3 from both sides gives us:
Factoring
Factoring an expression is essentially the opposite of distributing. Consider the expression 4x3 – 8x2 + 4x, for example. You can factor out the GCF of the terms, which is 4x:
The expression simplifies further:
See how useful these techniques are? You can group or ungroup quantities in an equation to make your calculations easier. In the last example from the previous section on manipulating equations, we distributed and factored to solve an equation. First, we distributed the quantity log 3 into the sum of x and 2 (on the right side of the equation). We later factored the term x out of the expression x log 2 – x log 3 (on the left side of the equation).
Distributing eliminates parentheses, and factoring creates them. It’s your job as a Math IC mathematician to decide which technique will best help you solve a problem.
Let’s see a few examples:
Combining Like Terms
After factoring and distributing, there are additional steps you can take to simplify expressions or equations. Combining like terms is one of the simpler techniques you can use, and involves adding or subtracting the coefficients of variables that are raised to the same power. For example, by combining like terms, the expression:
can be simplified to:
by adding the coefficients of the variable x3 together and the coefficients of x2 together.
Generally speaking, when you have an expression in which one variable is raised to the same power in different terms, you can factor out the variable and add or subtract the coefficients, combining them into one coefficient and therefore combining the “like” terms into one term. A general formula for combining like pairs looks something like this:
以上就是关于“SAT2数学考试题目:Manipulating Equations”的内容,更多精彩内容,请关注SAT频道!
SAT水平能力测试【0元免费测试】
资料下载
【SAT】SAT官方指南题目合集10套
发布时间:2024-04-15添加新东方在线美本助教号
回复【美本资料】获取
SAT阅读+文法+数学专项题型练习册
发布时间:2024-05-31添加新东方在线美本助教号
回复【美本资料】获取
机考SAT-可汗练习题
发布时间:2024-02-29添加新东方在线美本助教号
回复【美本资料】获取
机考SAT-CB官方样题
发布时间:2024-02-29添加新东方在线美本助教号
回复【美本资料】获取
《学科留学百问 (AP-IB-A Level)》
发布时间:2023-02-22添加新东方在线美本助教号
回复【美本资料】获取
2024中国学生留学备考白皮书
发布时间:2023-02-22添加新东方在线美本助教号
回复【美本资料】获取
2023北美考试一本通高中篇
发布时间:2023-02-22添加新东方在线美本助教号
回复【美本资料】获取
新东方SAT阅读讲义
发布时间:2023-02-06添加新东方在线美本助教号
回复【美本资料】获取
2023北美考试一本通高中篇
发布时间:2024-02-29关注美本留学家长帮微信订阅号
回复【美本资料】获取
2024中国学生留学备考白皮书
发布时间:2019-12-19添加新东方在线美本助教号
回复【美本】获取
《学科留学百问 (AP-IB-A Level)》
发布时间:2019-12-19添加新东方在线美本助教号
回复【美本资料】获取
机考SAT-CB官方样题
发布时间:2019-12-19添加新东方在线美本助教号
回复【美本资料】获取
机考SAT-可汗练习题
发布时间:2019-12-19添加新东方在线美本助教号
回复【美本资料】获取
SAT阅读+文法+数学专项题型练习册
发布时间:2019-11-28添加新东方在线美本助教号
回复【美本资料】获取
添加美本助教
即可获取美本资料大礼包
推荐阅读
更多>>在2024年的QS学科排名中,英国大学再次展现了他们在教育领域的卓越表现。这次排名中,英国大学在16个学科领域取得了世界第一的成绩,为其在全球教育界树立了新的标杆。
来源 : 网络整理 2024-04-23 11:16:49 关键字 : QS学科排名,英国大学qs学科排名
市场营销作为当代商业领域中至关重要的学科之一,一直备受关注。为了帮助读者更好地了解2024年全球市场营销学科的最新发展和排名情况,本文将介绍QS世界大学市场营销学科的排名榜单,并提供相关的官网链接供读者参考。
来源 : 网络整理 2024-04-23 10:21:37 关键字 : 市场营销学科排名,qs学科排名
备受关注的2024年酒店管理学科全球大学排名榜单终于揭晓,给全球学子带来了巨大的惊喜和期待。作为酒店管理学科领域的权威排行榜,该榜单汇集了各大知名院校和学者的投票和研究结果,为学生们提供了一份权威的选校参考指南。
来源 : 网络整理 2024-04-23 10:15:16 关键字 : 酒店管理学科排名,qs学科排名
每年QS世界大学统计与运筹学学科排名榜单都受到广泛关注,2024年的排名榜单也引起了极大的关注和讨论。首先,让我们来看一下2024QS世界大学统计与运筹学学科排名榜单的前几名。
来源 : 网络整理 2024-04-23 10:10:12 关键字 : 统计与运筹学学科排名,qs学科排名
随着2024QS世界大学经济与计量经济学学科排名榜单的发布,我们可以全面了解到这一领域的最新动态。本文将为您详细介绍2024QS世界大学经济与计量经济学学科排名榜单,解读其中的重点内容,并对我国相关大学在排名中的表现进行分析。
来源 : 网络整理 2024-04-23 10:03:55 关键字 : 经济与计量经济学学科排名,qs学科排名
最新发布的2024QS世界大学社会政策与行政管理排名榜单已经震动了全球教育界。这一排名榜单是依据世界知名教育机构QS(Quacquarelli Symonds)的权威数据和专业评估,为我们提供了一份准确且独具参考价值的全球大学排名。
来源 : 网络整理 2024-04-22 17:01:59 关键字 : 社会政策与行政管理学科排名,qs学科排名
社会学作为一门独具特色的学科,对于了解人类社会的发展和变迁起着举足轻重的作用。每年,QS世界大学社会学排名榜单会揭晓全球各大高等院校在这一领域的表现,并成为了各界人士瞩目的焦点。今天,让我们一起来揭晓2024年的榜单,并深入探讨排名的背后故事。
来源 : 网络整理 2024-04-22 16:56:00 关键字 : 社会学学科排名,qs学科排名
在当今竞争激烈的社会中,选择一所优秀的大学对我们的未来发展至关重要。随着法律行业的日益发展和全球化的趋势,了解和掌握国际上优秀的法律学府成为了无比重要的事情。而2024QS世界大学法律与法律研究排名榜单正是我们选择合适学府的权威指南。
来源 : 网络整理 2024-04-22 16:51:49 关键字 : 法律与法律研究学科排名,qs学科排名
2024QS世界大学教育与培训排名榜单,作为权威的评估之一,给出了全球范围内的学府排名。本次榜单覆盖了各个学科领域,综合评估了学校的教学质量、师资水平、科研实力等多个方面,旨在为学生和家长提供一个参考。
来源 : 网络整理 2024-04-22 16:48:08 关键字 : 教育与培训学科排名,qs学科排名
政治学作为一门研究人类政治行为、政治制度、政治思想等内容的学科,一直备受关注。近日,2024QS世界大学排名公布了最新的政治学学科排名榜单,引起了广泛的关注和讨论。
来源 : 网络整理 2024-04-22 16:38:53 关键字 : 政治学学科排名,qs学科排名
自动领取备考资料大礼包
1. 打开手机微信【扫一扫】,识别上方二维码;
2.添加【美本助教】,自动领取留学备考资料大礼包。
公开讲座
更多>>真实了解自己的水平,为备考做好规划!
价格 : ¥0元
真实了解自己的水平,为备考做好规划!
价格 : ¥0元
真实了解自己的水平,为备考做好规划!
价格 : ¥0元
资料下载
更多>>添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
关注美本留学家长帮微信订阅号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
添加新东方在线美本助教号
回复【美本资料】获取
自动领取备考资料大礼包
1. 打开手机微信【扫一扫】,识别上方二维码;
2.添加【Ella助教】,自动领取留学备考资料大礼包。
阅读排行榜
相关内容